
Khwaja Yunus Ali Uni.J. Vol. 5, Issue 1, June 2022

KYAU Journal, 5(1), 36-44

36

Khwaja Yunus Ali University Journal

Publisher homepage: www.kyau.edu.bd

OPEN ACCESS

ISSN: 2791-3759 (Online), 2521-3121 (Print)

Journal homepage:www.journal.kyau.edu.bd

Research Article

An Effective Sequential Hybrid Single Pattern Searching Approach for

Bioinformatics

Prince Mahmud
1*

, and Md. Moinuddin
2

Department of Computer Science and Engineering, School of Engineering Sciences, Khwaja Yunus Ali

University, Sirajganj, Bangladesh

*Corresponding Author: m.princecse@gmail.com (Prince Mahmud, Lecturer, Department of Computer Science

and Engineering, Khwaja Yunus Ali University, Sirajganj, Bangladesh)

Abstract:

Pattern searching is a significant part of computer

science. There are huge pattern searching

approaches that exist to solve the string matching

problems. There are huge fields of pattern matching

such as pattern finding in a specific text, plagiarism

detection, intelligent machine, bioinformatics, and

video retrieval. The main intention of pattern

searching is to reduce the shifting and comparisons.

For reducing those factors, we have introduced an

EPSA (Effective Pattern Searching Approach)

algorithm which is a sequential hybrid approach. We

have assembled the good properties of Berri

Ravindran, Quick search, and raita algorithm to

construct our EPSA algorithm. We have used DNA

and protein sequences to test the efficiency of our

EPSA algorithm. The proposed EPSA algorithm

displays an effective result compared with the Back

and Forth matching and Maximum Shift algorithm,

which reduces the number of shifting and

comparisons.

Keywords: Hybrid, Exact matching, Bioinformatics, Single pattern, on-line approach.

1. Introduction

Data and Files are an important part of every

institution. Finding the specific data among the huge

amount of data is the most important challenge in

every organization [1]. Finding a convenient pattern in

a text is a simple process, but as file sizes grow, they

can become highly time-consuming [2].In computer

science, string searching is a classic and conventional

problem that involves some techniques. String

Searching is a type of string algorithm that finds the

occurrence of a pattern in a text string, where strings

are alphabetic character sequences (finite set) Σ [3].

Let’s say the text is x of length a and the pattern is y of

length b, with the pattern’s length being less than or

equal to the length of text (i.e., a<=b).String matching

in biological sequences is among the first problems

that computer scientists tackled. Even though DNA

and proteins encode all information as nucleotide

sequences with a short and simple alphabet, analyzing

biological sequences is regarded as a traditional string

matching problem [4, 5].

There are mainly two forms of string matching based

on their accuracy: Exact and approximate string

matching. Exact matching provides an accurate search

http://www.kyau.edu.bd/
http://www.journal.kyau.edu.bd/

Khwaja Yunus Ali Uni.J. Vol. 5, Issue 1, June 2022

KYAU Journal, 5(1), 36-44

37

for the exact happening of the pattern inside the text,

whereas approximate string matching provides for

erroneous searching [6, 8].String matching can be

partitioned into two types based on the number of

patterns [7]. Throughout the text, a single pattern is

explored in single pattern string matching [9]. Multiple

patterns are explored within the text simultaneously in

multiple pattern string matching [10]. The exact string

match and single pattern match have been the main

focus of this research.

Fig 1.1: Forms of string matching

2. Related works

To address the string searching problem, a large

number of algorithms employ their technique. Each

algorithm uses its technique or a hybrid approach.

Brute Force is most likely the first algorithm that

comes to mind when considering how to solve the

pattern-finding problem [11]. It has no preprocessing

phase. This algorithm searches the pattern character by

character and moves the pattern one location to the

right when any match or mismatch occurs [12].The

Boyer Moore (BM) method introduces three pattern-

finding concepts: the bad character rule, the good

suffix rule, and the right to left comparison [13]. This

method is divided into 2 parts: preprocessing and

searching [14]. Based on the pattern for the given

alphabet, the pre-processing phase applies to the first

two observations. The searching is related to the Brute

Force scanning technique, but with the additional

properties of aligning the pattern from left to right and

attempting to compare characters from right to left

order, which enhances the efficiency of that string

matching algorithm [15]. Horspool algorithm is a

modification of the Boyer Moore algorithm which uses

only bad character rules of the BM algorithm [16].To

identify a pattern in a text string, two phases are

required: preprocessing and searching. The

preprocessing phase is the same as the BM method

using only the bad character table [17].The Quick

Search (QS) algorithm is another variant of the BM

algorithm [17, 18].The main difference between the

Horspool algorithm and the quick search algorithm is

shifting value calculation. The shifting value of the QS

algorithm depends on the next character of the search

window [19].The search window is compared to the

pattern from left to right during the searching phase.

The problem of the bad character rule (Small alphabet

set) is improved by the good suffix rule. But the good

suffix rule requires more comparisons and attempts for

the longer alphabet. The Zhu-Takaoka (ZT) algorithm

improves the BM algorithm's average case. The bad

character shift function was improved by this

algorithm. The core concept is concentrated on the

preprocessing phase, which generates the preprocessed

table using two characters rather than one in the

original BM algorithm [20]. This algorithm’s character

comparison is performed from right to left order.

Another adaptation of the BM method is Raita

algorithm. The preprocessing phase same as the

Horspool algorithm shifting technique and the

searching phase is different [21]. This algorithm is

experimentally efficient for searching the pattern in the

English text. Berry-Ravindran’s (BR) algorithm

combines the best features of the QS and the modified

of Zhu-Takaoka algorithm. Berry and Ravindran

simply create a preprocessed moving function from the

QS and Zhu-Takaoka functions. The pattern is started

to shift during the searching phase based on the

changing value of the two sequential characters of text

beside the search window [17, 23].Maximum Shift

Khwaja Yunus Ali Uni.J. Vol. 5, Issue 1, June 2022

KYAU Journal, 5(1), 36-44

38

(MS) is an effective hybrid string matching algorithm

[22]. They combine the features of the Quick Search,

Zhu-Takaoka, and Horspool algorithms to reduce the

number of shifting and comparisons. This algorithm

outperforms the Quick Search, Smith, and Berry

Rabindran algorithms in terms of efficiency. This

algorithm is broken down into three stages:

preprocessing, maximum, and searching. The

preprocessing phase is integrated from the shifting

function of QS and the Zhu-Takaoka algorithm. The

maximum stage is concerned with the maximum value

of two pre-calculated shifting functions. The searching

phase is slightly different from the horspool algorithm.

The Back and Forth Matching (BFM) algorithm is

used the index-based technique [1]. This algorithm

saves all first-position text where the pattern’s initial

and last character is the same as the initial and

lattermost character of the search window. The

pattern's upper-left and upper-right hand characters are

checked with the initial and lattermost characters of

the search window simultaneously during the

searching phase.

3. Proposed algorithms

The fundamental purpose of this study is to develop an

effective sequential hybrid algorithm by combining

three existing techniques to solve the pattern matching

issue. We blend the concept of Berry-Ravindran [17,

23], Quick Search [17, 18], and Raita [21] algorithm.

The phases of our algorithm are as follows:

3.1Preprocessing Phase

For preprocessing, our algorithm uses the concept of

Berry-Ravindran and the Quick Search algorithm.

Our algorithm only preprocesses the pattern using

those algorithms. First of all, our algorithm creates

Berry-Ravindran bad character table using the

following shifting function:

𝑏𝑟𝐵𝑐 𝑐, 𝑑 = 𝑚𝑖𝑛

1 𝑖𝑓 𝑦 𝑏 − 1 = 𝑐

𝑏 − 𝑖 + 1 𝑖𝑓 𝑦 𝑖 𝑦 𝑖 + 1 = 𝑐𝑑

𝑏 + 1 𝑖𝑓 𝑦 0 = 𝑑
 𝑏 + 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here, y is the pattern, b is the length and i is the index of the pattern0 to b-1, c and d are two successive

characters. Then, our algorithm creates the Quick Search bad character table using the following function:

𝑞𝑠𝐵𝑐 𝑥 =
(𝑖: 0 ≤ 𝑖 < 𝑏 𝑎𝑛𝑑 𝑦[𝑏 − 𝑖] = 𝑥) 𝑖𝑓 𝑥 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑦

𝑏 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here, b is the length and idenote the index of the pattern y from 0 to b-1. The character x defines each element in

the text.

3.2 Searching Phase

The searching phase consists of two main stages: the

maximum calculation and the searching technique. For

shifting the pattern, our technique uses the largest

value from Berry-Ravindran and Quick Search's bad

character database. It is noted that the shifting position

of the Berry-Ravindran bad character table depends on

the preprocessed value of the two successive

characters of the rightmost next to the search window

and the shifting position of the Quick Search table

depends on the preprocessed value of the rightmost

next character of the search window.

Our proposed EPSA employs Raita algorithm

techniques to find a pattern inside the text. This

algorithm fits the pattern beneath the text first, and

then compares the pattern's rightmost character to the

search window’s last character. If a match is found,

then the first character of the pattern is compared to

the search window's leftmost character. If a match is

found, it compares the pattern's middle character and

searches before actually comparing the others. The

remaining characters are likened in order from left to

right. If there is any mismatch, the pattern will be

shifted by the maximum value from two tables

calculated in the preprocessing phase.

Khwaja Yunus Ali Uni.J. Vol. 5, Issue 1, June 2022

KYAU Journal, 5(1), 36-44

40

Figure 3.1 shows the search technique of our proposed algorithm:

Let, a text x = ACGCGTAGTCAGTACGTAGCG and pattern y = CGTAGTC from the x.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A C G C G T A G T C A G T A C G T A G C G

 C G T A G T C

 2 4 5 3 6 7 1

Fig 3.1: Search technique of our proposed EPSA algorithm

4. Working example

Helianthus annuus is a significant member of the

Composite family. It is a key source of oil and a

complementary source of protein for humans and

livestock all over the world. We employed the

Helianthus annuus cultivar XRQ/B chromosome 1

whole genome shotgun sequence to test the

suggested EPSA method. According to the FASTA

format, we selected a small portion of the gene's

nucleotide sequence from index 85273 to 85297

[24].

The text of the DNA sequence to be considered, with the alphabet set Σ = {A, C, G, T} is

x= TGATCTGGCATGTACAGAATGAAAA and pattern y = TGTAC from the x.

Berry Ravindran bad character table for two consecutive characters a ,and b are shown in Table 4.1 for pattern p.

 A C G T

A 7 2 7 6

C 1 1 1 1

G 7 7 7 4

T 3 7 5 6

Table 4.1: Berry Ravindran Bad Character Table

The Quick Search table is shown in table 4.2 for pattern p.

x A C G T

qsBc(x) 2 1 4 5

Table 4.2: Quick Search Table

For searching, firstly align the pattern in the first

position within the text. The method uses the

maximum shift value from two tables since the

middle character is mismatched. Here, Berry

Ravindran’s and Quick search bad character table

values are equal so this algorithm takes any one

table value and shifts the pattern to text position 6.

Figure 4.1 shows the searching procedure of our

EPSA algorithm:

1
st
 attempt:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T G A T C T G G C A T G T A C A G A A T G A A A A

Khwaja Yunus Ali Uni.J. Vol. 5, Issue 1, June 2022

KYAU Journal, 5(1), 36-44

40

T G T A C

Shift by qsBc[T] = brBc[T,G] = 5

2
nd

 attempt:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T G A T C T G G C A T G T A C A G A A T G A A A A

T G T A C Shift by qsBc[T] = brBc[T, G] = 5

3
rd

 attempt:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T G A T C T G G C A T G T A C A G A A T G A A A A

 Shift by brBc[A, G] = 7 T G T A C

4
th
 attempt:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T G A T C T G G C A T G T A C A G A A T G A A A A

T G T A C

Fig 4.1: Searching procedure of our EPSA algorithm

The last character is mismatched in the second

attempt, so this algorithm uses the highest value

from two tables. Here, two tables' shifting value is

also equal so takes anyone and shifts the pattern to

text position 11. In the 3rd attempt, the pattern is

matched within the search window of the text. After

matching the pattern, this algorithm takes the

maximum value from two tables for shifting the

pattern. Here, Quick search bad character table value

is 2 and Berry Ravindran’s bad character table value

is 7 so our algorithm takes Berry Ravindran’s bad

character table value and shifts the pattern to text

position 18. In the 4th attempt, the lastposition of the

pattern and search window is mismatched but there

is no need to be shifted the pattern because the

pattern exits the text. However, our algorithm needs

4 shifting and 10 comparisons for probing the

pattern within the text.

5. Result analysis

Data analysis is the most important fact to discover

and implement a new methodology or algorithm. We

have used two types of data to appraise the

performances of the EPSA algorithm. These are the

DNA sequence and the Protein sequence. We have

used one-hundred MB of all datasets to appraise our

EPSA algorithm. All of the datasets are obtained from

the "Pizza & Chili Corpus" website [25].

The number of shifting and comparisons are two

important characteristics for evaluating the efficiency

of the pattern matching approach. We chose pattern

lengths of 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

150, and 200 at random from the text for analyzing

those two factors.

Figures 5.1 and 5.2 displays the number of shifting and

comparisons respectively for the DNA sequence. This

result shows that the MS algorithm is better for small

pattern lengths such as pattern lengths 3, 5, etc., but

the BFM algorithm is better for large pattern lengths.

Our proposed EPSA algorithm shows the worst result

for small patterns compared with the MS algorithm but

shows better results for large pattern lengths compared

with the BFM and MS algorithm. The worst outcome

Khwaja Yunus Ali Uni.J. Vol. 5, Issue 1, June 2022

KYAU Journal, 5(1), 36-44

41

is caused by character repetitions in a tiny alphabet set

of DNA sequences.

Figures 5.3 and 5.4 display the number of shifting and

comparisons respectively for the Protein sequence.

This result shows that the performance of our

proposed EPSA algorithm outperforms the BFM

method for the full pattern set, whereas the BFM

algorithm outperforms the MS algorithm.

Now if we merge the result of shifting from Figure 5.1

and the result of character comparisons from Figure

5.2, we get the following result shown in Figure 5.5

and merge the result of shifting from Figure 5.3 and

the result of character comparisons from Figure 5.4,

we get the following result shown in Figure 5.6. It is

clearly seen that if the number of shifting is increased,

the number of comparisons will increase for any

length of the pattern. Moreover, the graph shows

random points for both the number of attempts and

comparisons. There is no continuous increment or

decrement with the length of the pattern.

Fig. 5.1: Theshifting using DNA sequence

Fig. 5.2: The comparisons using DNA sequence

0

10000000

20000000

30000000

40000000

3 5 10 20 30 40 50 60 70 80 90 100 150 200

S
h
if

ti
n
g

Pattern Length

EPSA BFM MS

0

20000000

40000000

60000000

3 5 10 20 30 40 50 60 70 80 90 100 150 200

C
o

m
p
ar

is
o

n
s

Pattern Length

EPSA BFM MS

Khwaja Yunus Ali Uni.J. Vol. 5, Issue 1, June 2022

KYAU Journal, 5(1), 36-44

42

Fig. 5.3: The shifting using Protein sequence

Fig. 5.4: The comparisons using Protein sequence

Fig. 5.5: Number of shifting and comparisons using DNA sequence

0

5000000

10000000

15000000

20000000

25000000

3 5 10 20 30 40 50 60 70 80 90 100 150 200

S
h
if

ti
n
g

Pattern Length

EPSA BFM MS

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000

3 5 10 20 30 40 50 60 70 80 90 100 150 200

C
o

m
p
ar

is
o

n
s

Pattern Length

EPSA BFM MS

0

5000000

10000000

15000000

20000000

25000000

30000000

3 5 10 20 30 40 50 60 70 80 90 100 150 200

N
u
m

b
er

Pattern Length

Attempts Character Comparisons

Khwaja Yunus Ali Uni.J. Vol. 5, Issue 1, June 2022

KYAU Journal, 5(1), 36-44

43

Fig. 5.6: Number of shifting and comparisons using Protein sequence

6. Conclusions

The development of numerous algorithms has resulted

in a vast field of string matching. The number of time-

saving string matching techniques is steadily

increasing. The most prevalent motive of string

matching is to reduce the shifting and comparisons

which minimize the execution time. The proposed

hybrid EPSA algorithm reduces the shifting and

comparisons compared with the BFM and MS

algorithm. As a result, this algorithm would

undoubtedly be an efficient choice for tasks that

necessitate a large number of text searches. One

limitation of our algorithm is that the shifting and

comparison increase when the alphabet set and pattern

length are shorter.

7. Conflict of Interest:

All the authors in this research project hereby declare

that there are no conflicts of interest.

8. Acknowledgement

First, we would like to express profound gratitude to

the supreme of the universe the Almighty Allah. We

would also like to express our deepest appreciation to

all those who provided immense support and guidance

for successfully completing this research work.

9. Funding of the Research

This work is funded by the Research Grant Committee

(RGC), KhwajaYunus Ali University, Enayetpur, and

Sirajganj, Bangladesh.

10. Authors Contributions

The concept of this present research was initiated by

Mahmud P. All the authors participated in designing a

questionnaire for the purpose of collecting and editing

data. Thereafter, edited data was tested and analyzed

with the cooperation of all authors. Finally, Mahmud

P. took part in writing the manuscript and the rest of

the authors approved the final manuscript after careful

readings.

11. References

1. Al-Faruk, MD Obaidullah, et al. “BFM: a forward-

backward string matching algorithm with

improved shifting for information

retrieval.” International Journal of Information

Technology (2019): 1-5

2. Hakak, Saqib Iqbal, et al. “Exact String Matching

Algorithms: Survey, Issues, and Future Research

Directions.” IEEE Access 7 (2019): 69614-69637

3. Gurung, Dipendra, Udit Kr Chakraborty, and

Pratikshya Sharma. “Intelligent predictive string

search algorithm.” Procedia Computer Science 79

(2016): 161-169.

4. Xylogiannopoulos, Konstantinos F. “Exhaustive

exact string matching: the analysis of the full

human genome.” 2019 IEEE/ACM International

Conference on Advances in Social Networks

Analysis and Mining (ASONAM). IEEE, 2019.

5. Kalsi, Petri, HannuPeltola, and JormaTarhio.

“Comparison of exact string matching algorithms

for biological sequences.” International

Conference on Bioinformatics Research and

Development. Springer, Berlin, Heidelberg, 2008.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000

3 5 10 20 30 40 50 60 70 80 90 100 150 200

N
u
m

b
er

Pattern Length

Attempts Character Comparisons

Khwaja Yunus Ali Uni.J. Vol. 5, Issue 1, June 2022

KYAU Journal, 5(1), 36-44

44

6. Hakak, Saqib Iqbal, et al. “Exact string matching

algorithms: Survey, issues, and future research

directions.” IEEE Access 7 (2019): 69614-69637.

7. Markić, Ivan, Maja Štula, MarijaZorić, and

DarkoStipaničev. “Entropy-Based Approach in

Selection Exact String-Matching

Algorithms.” Entropy 23, no. 1 (2021): 31.

8. Rekha, J. UJWALA. “Approximate multiple string

matching algorithm.” Journal of Theoretical and

Applied Information Technology 98.11 (2020).

9. Singla, Nimisha, and Deepak Garg. “String

matching algorithms and their applicability in

various applications.” International journal of soft

computing and engineering 1.6 (2012): 218-222.

10. Yang, Peng, et al. “Fast multi-pattern string

matching algorithms based on q-grams bit-

parallelism filter and hash.” Proceedings of the

2012 International Conference on Information

Technology and Software Engineering. Springer,

Berlin, Heidelberg, 2013

11. Mohammad, Ababneh, Oqeili Saleh, and Rawan

A. Abdeen. “Occurrences algorithm for string

searching based on brute-force algorithm.” Journal

of Computer Science 2.1 (2006): 82-85.

12. Ibrahim, Amin MubarkAlamin, and Mustafa Elgili

Mustafa. “Comparison criteria between matching

algorithms texts application on (horspool’s and

brute force algorithms).” Journal of Advanced

Computer Science & Technology 4.1 (2015): 175.

13. Boyer, Robert S., and J. Strother Moore. “A fast

string searching algorithm” Communications of

the ACM 20.10 (1977): 762-772

14. Ojugo, Arnold Adimabua, and David Ademola

Oyemade. “Boyer Moore string-match framework

for a hybrid short message service spam filtering

technique.” IAES International Journal of

Artificial Intelligence 10.3 (2021): 519.

15. Al-Dabbagh, Sinan Sameer Mahmood, and

NawafHazimBarnouti. “A New Efficient Hybrid

String Matching Algorithm to Solve the Exact

String Matching Problem.” British Journal of

Mathematics and Computer Science, pp. 1-14,

2017.

16. Horspool, R. Nigel. “Practical fast searching in

strings.” Software: Practice and Experience 10.6

(1980): 501-506.

17. Charras Christian, Thierry Lecroq. “Handbook of

exact string matching algorithms.” King’s College;

2004.

18. Sunday, Daniel M. “A very fast substring search

algorithm.” Communications of the ACM 33.8

(1990): 132-142.

19. Al-Dabbagh, Sinan Sameer Mahmood, et al.

“Parallel quick search algorithm for the exact

string matching problem using OpenMP.” Journal

of Computer and Communications 4.13 (2016): 1-

11

20. Feng, Zhu Rui, and Tadao Takaoka. “On

improving the average case of the BoyerMoore

string matching algorithm.” Journal of Information

Processing 10.3 (1987): 173- 177.

21. Raita, Timo. “Tuning the boyer‐ moore‐ horspool

string searching algorithm.” Software: Practice

and Experience 22.10 (1992): 879-884.

22. Kadhim, HakemAdil, and NurAiniAbdulRashid.

“Maximum-shift string matching algorithms.”

Computer and Information Sciences (ICCOINS),

2014 International Conference on. IEEE, 2014

23. http://www-igm.univ-

mlv.fr/~lecroq/string/berryravindran.html,accessd

February, 2022

24. (2022) National Center for Biotechnology

Information. [Online]. Available:

https://www.ncbi.nlm.nih.gov/gene/?term=

Helianthus annuus

25. http://pizzachili.dcc.uchile.cl/texts.html,accessed

February, 2022

Citation: Mahmud P, and Moinuddin M. (2022).An Effective Sequential Hybrid Single Pattern Searching

Approach for Bioinformatics. KYAU Journal.5 (1):36-44

http://www-igm.univ-mlv.fr/~lecroq/string/berryravindran.html
http://www-igm.univ-mlv.fr/~lecroq/string/berryravindran.html
http://pizzachili.dcc.uchile.cl/texts.html

